- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Braun, Peter (2)
-
Litz, Heiner (2)
-
Kasikci, Baris (1)
-
Khan, Tanvir Ahmed (1)
-
Soundararajan, Niranjan K (1)
-
Subramoney, Sreenivas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Braun, Peter; Litz, Heiner (, International Workshop on AI-assisted Design for Architecture (AIDArc), held in conjunction with ISCA)The Von Neumann bottleneck is a persistent problem in computer architecture, causing stalls and wasted CPU cycles. The Van Neumann bottleneck is particularly relevant for memory-intensive workloads whose working set does not fit into the microprocessor’s cache and hence memory accesses suffer the high access latency of DRAM. One technique to address this bottleneck is to prefetch data from memory into on-chip caches. While prefetching has proven successful, for simple access patterns such as strides, existing prefetchers are incapable of providing benefit for applications with complex, irregular access patterns. A neural network-based prefetcher shows promise for these challenging workloads. We provide a better understanding of what type of memory access patterns an LSTM neural network can learn by training individual models on microbenchmarks with well-characterized memory access patterns. We explore a range of model parameters and provide a better understanding of what model is ideal to use. We achieve over 95% accuracy on the microbenchmarks and find a strong relationship between lookback (history window) size and the ability of the model to learn the pattern. We find also an upper limit on the number of concurrent distinct memory access streams that can be learned by a model of a given size.more » « less
An official website of the United States government

Full Text Available